Error loading page.
Try refreshing the page. If that doesn't work, there may be a network issue, and you can use our self test page to see what's preventing the page from loading.
Learn more about possible network issues or contact support for more help.

Why Machines Learn

The Elegant Math Behind Modern AI

Audiobook (Includes supplementary content)
1 of 1 copy available
1 of 1 copy available
A rich, narrative explanation of the mathematics that has brought us machine learning and the ongoing explosion of artificial intelligence
Machine learning systems are making life-altering decisions for us: approving mortgage loans, determining whether a tumour is cancerous, or deciding whether someone gets bail. They now influence developments and discoveries in chemistry, biology, and physics—the study of genomes, extra-solar planets, even the intricacies of quantum systems. And all this before large language models such as ChatGPT came on the scene.
We are living through a revolution in machine learning-powered AI that shows no signs of slowing down. This technology is based on relatively simple mathematical ideas, some of which go back centuries, including linear algebra and calculus, the stuff of seventeenth- and eighteenth-century mathematics. It took the birth and advancement of computer science and the kindling of 1990s computer chips designed for video games to ignite the explosion of AI that we see today. In this enlightening book, Anil Ananthaswamy explains the fundamental math behind machine learning, while suggesting intriguing links between artifical and natural intelligence. Might the same math underpin them both?
As Ananthaswamy resonantly concludes, to make safe and effective use of artificial intelligence, we need to understand its profound capabilities and limitations, the clues to which lie in the math that makes machine learning possible.
*This audiobook contains a PDF of equations, graphs, and illustrations.
  • Creators

  • Publisher

  • Release date

  • Formats

  • Languages

  • Reviews

    • Publisher's Weekly

      May 6, 2024
      This impenetrable primer from science writer Ananthaswamy (Through Two Doors at Once) unsuccessfully attempts to elucidate how AI works. He explains that it learns by scanning data for patterns and then makes predictions about what kinds of data are likely to appear in sequence. Unfortunately, the excruciatingly detailed breakdown of the roles played by probability, principal component analysis (“projecting high-dimensional data onto a much smaller number of axes to find the dimensions along which the data vary the most”), and eigenvectors (which are never satisfactorily defined) will sail over the heads of anyone without an advanced math degree. Biographical background on physicist John Hopfield, electrical engineer Bernhard Boser, and other pioneering contributors to machine learning does little to alleviate the labyrinthine discussions of their advances. There are some bright spots—as when Ananthaswamy discusses how statisticians deduced the authorship of the contested Federalist Papers by analyzing whether the writing more closely reflected the vocabulary of James Madison or Alexander Hamilton—but these highlights are few and far between, surrounded by bewildering equations and dense proofs for mathematical theorems. General readers will struggle to follow this. Agent: Peter Tallack, Curious Minds Agency.

Formats

  • OverDrive Listen audiobook

Languages

  • English

Loading